
May 2016 DocID17985 Rev 3 1/23

1

AN3281
Application note

STM8 8-bit MCUs I2C optimized examples

Introduction

This document describes how to use the following I2C optimized examples:

• Hardware configuration example of a common I2C bus

• Master firmware examples in polling mode

• Master firmware examples with interrupt

• Slave firmware examples.

Reference documents

• I2C-bus specification, version 2.1, January 2000, NXP

• STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016)

• STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU
lines reference manual (RM0031)

• STM8L101xx microcontroller family reference manual (RM0013)

• STM8TL5xxx microcontroller family reference manual (RM0312).

www.st.com

http://www.st.com

Contents AN3281

2/23 DocID17985 Rev 3

Contents

1 Hardware configuration example of a common I2C bus 5

2 Software of I2C firmware examples . 6

3 Master firmware examples in polling mode . 7

3.1 Application layer example in polling mode . 7

3.2 Data link layer example in polling mode . 7

3.2.1 Functions predefined to control the data flow on master firmware
in polling mode (to be customized) . 7

4 Master firmware examples with interrupt . 14

4.1 Master application layer example with interrupt . 14

4.2 Master data link layer example with interrupt . 14

4.2.1 Functions predefined to control the data flow on master firmware
with interrupt (to be customized) . 14

5 Slave firmware examples with interrupt . 18

5.1 Slave application layer example with interrupt . 18

5.2 Slave data link layer example with interrupt . 18

5.2.1 Functions predefined to control the data flow on slave firmware
with interrupt (to be customized) . 18

5.3 Data link layer flowchart . 21

6 Revision history . 22

DocID17985 Rev 3 3/23

AN3281 List of tables

3

List of tables

Table 1. Document revision history . 22

List of figures AN3281

4/23 DocID17985 Rev 3

List of figures

Figure 1. Hardware configuration example of a common I2C bus . 5
Figure 2. N-data byte write sequences preceded by a one-command byte. 8
Figure 3. One-datum or command byte write sequence . 8
Figure 4. Flowchart of data-write sequences made by the I2C_WriteRegister()

function . 9
Figure 5. N-data byte read sequences preceded by a one-command byte . 10
Figure 6. N-data byte random read sequences (without any command) . 11
Figure 7. Flowchart of data read sequences made by the I2C_RandomRead() function 12
Figure 8. I2C state machine flowchart . 16
Figure 9. Data link layer flowchart . 21

DocID17985 Rev 3 5/23

AN3281 Hardware configuration example of a common I2C bus

22

1 Hardware configuration example of a common I2C
bus

The firmware examples provided within this application note illustrate the basics of the I2C
communication protocol on the STM8 microcontrollers. In these examples, the I2C
peripheral is used to communicate between two STM8 devices.

The I2C can also be reused and customized to fit a specific application which requires an
I2C communication with another device using the I2C protocol. In these examples, the
master and slave work together and transmit data through the bus.

At all times, the I2C protocol is respected (see the I2C-bus specification). Figure 1 shows the
hardware configuration that must be followed.

Figure 1. Hardware configuration example of a common I2C bus

1. Legend:
VCC = supply voltage, typically ranging from 1.8 V to 5 V
SDA = Serial data (I2C data line)
SCL = Serial clock (I2C clock line)
Rp1, Rp2 = Pull-up resistor used to set the bus idle voltage to VCC. Also called the I2C termination.
Rs1, Rs2 = Optional 100 Ohm serial resistor used to ease differentiation between master and slave when analyzing
communication waveforms on the oscilloscope. These resistors must be placed on one extremity of the bus (on the master
or slave side).

DocID17985 Rev 3 6/23

AN3281 Software of I2C firmware examples

22

2 Software of I2C firmware examples

The software of all I2C firmware examples is divided into two basic levels:

• An application layer (main.c) - which is an example of how to implement all the I2C
procedures. It must be replaced by the usercode in the final application.

• A data link layer (I2C_xxx.c) - which manages the data flow process and hardware
control. The user should not change the software at this level. All processes at data link
level are managed by a set of predefined functions contained in the data link layer.
These functions are called from the application level.

DocID17985 Rev 3 7/23

AN3281 Master firmware examples in polling mode

22

3 Master firmware examples in polling mode

3.1 Application layer example in polling mode

This layer simulates an I2C memory access with an offset command. It should be used with
the example of the provided I2C slave.

After peripheral initialization, the program runs in a testing loop. This sends a succession of
bytes to be stored in the slave memory and then reads them back. After each loop, all sent
and received values are compared for integrity checking purposes. The first byte of every
message is used as a memory offset command for the data storage register.

All read and write procedures performed on the I2C bus are managed by calling dedicated
functions from the data link layer. Their execution times are guarded by a timeout which is
serviced by a dedicated timer. This timeout is reset at the start of every testing loop and is
checked at the end of every loop. If the timer counter reaches 0, it means that one I2C
communication is stuck.

3.2 Data link layer example in polling mode

All I2C activities of the data link layer (except errors) are performed and checked by polling.
Errors are handled by the I2C interrupt service. The specific functions for I2C flow control are
predefined in this part of the firmware. They are called by the application layer to control all
I2C processes and they can be customized by the user according to the application needs.

The address of the slave is fixed in form of a compilation parameter. These procedures
follow specific processes which cover all the known I2C errata issues (see Figure 4 and
Figure 7).

3.2.1 Functions predefined to control the data flow on master firmware
in polling mode (to be customized)

I2C_WriteRegister function

This function sends an offset/command byte followed by a defined number of data bytes
from a specific data field. This function can also be used to send one byte if it is called with
zero number of data bytes. In the example in Figure 2, the first (command) byte is
interpreted as an offset from which data is stored in the slave device.

Prototype

void Function I2C_WriteRegister (u8 offset_command, u8 number_of_data_bytes, u8
*data_field_address).

Parameters

• offset_command: first byte to send during communication. Can be used as offset,
command, or first datum.

• number_of_data_bytes: number of bytes to be sent. Value from 0 to 255.

• *data_field_address: pointer to first address of data to be sent.

DocID17985 Rev 3 8/23

AN3281 Master firmware examples in polling mode

22

Return value

None.

Figure 2. N-data byte write sequences preceded by a one-command byte

1. Legend: S = start, P = stop, H = high, L = low

Figure 3. One-datum or command byte write sequence

1. Legend: S = start, P = stop, H = high, L = low

DocID17985 Rev 3 9/23

AN3281 Master firmware examples in polling mode

22

Figure 4. Flowchart of data-write sequences made by the I2C_WriteRegister()
function

1. Legend: SB = start bit, RW = read/write bit

DocID17985 Rev 3 10/23

AN3281 Master firmware examples in polling mode

22

I2C_ReadRegister function

This function sends one byte (offset_command value) to the slave. It then restarts the bus
and continues communication by reading a defined number of data bytes. Bytes are stored
in a specific data field starting from a specified address. The offset_command value
depends on the slave device interpretation. In this example, it is used as a memory offset. It
can be used in other applications as a command for specific I2C peripherals.

Prototype

void Function I2C_ReadRegister (u8 offset_command, u8 number_of_data_bytes, u8
*data_field_address).

Parameters

• offset_command: first byte to send during communication. Can be used as offset,
command, or first datum.

• number_of_data_bytes: number of bytes to read. Value from 0 to 255.

• *data_field_address: pointer to first address of data to store received data.

Return value

None.

Figure 5. N-data byte read sequences preceded by a one-command byte

1. Legend: S = start, P = stop, H = high, L = low

2. Stop is not mandatory in this sequence and can be skipped by defining the “NO_RESTART” constant in the driver header
file (I2C_master_poll.h).

DocID17985 Rev 3 11/23

AN3281 Master firmware examples in polling mode

22

I2C_RandomRead function

This function reads directly the requested data from the slave. No offset or command byte is
written previously. It can be used as a standard or continuous read (where auto-
incrementation of addresses is available on the slave side). Received bytes are stored in
data fields starting from specified data field addresses.

Prototype

void Function I2C_RandomRead (u8 number_of_data_bytes, u8 *data_field_address).

Parameters

• number_of_data_bytes: number of bytes to read. Value from 0 to 255.

• *data_field_address: pointer to first address to store received data.

Return value

None.

Figure 6. N-data byte random read sequences (without any command)

1. Legend: S = start, P = stop, H = high, L = low

DocID17985 Rev 3 12/23

AN3281 Master firmware examples in polling mode

22

Figure 7. Flowchart of data read sequences made by the I2C_RandomRead() function

1. Legend: SB = start bit, RW = read/write bit

DocID17985 Rev 3 13/23

AN3281 Master firmware examples in polling mode

22

The I2C read register function is the succession of one I2C write register function call and
one I2C random read function call (see Figure 4: Flowchart of data-write sequences made
by the I2C_WriteRegister() function and Figure 7: Flowchart of data read sequences made
by the I2C_RandomRead() function).

DocID17985 Rev 3 14/23

AN3281 Master firmware examples with interrupt

22

4 Master firmware examples with interrupt

4.1 Master application layer example with interrupt

The function and purpose of this layer is the same as for polling mode. After peripheral
initialization, the program stays in a testing loop. This sends a succession of bytes to be
stored into the slave memory and then reads back from the slave. After each loop, all sent
and received values are compared for integrity checking purposes. For more details, please
refer to Section 3.1: Application layer example in polling mode.

4.2 Master data link layer example with interrupt

All I2C activities of the data link layer are handled by the I2C interrupt service. This interrupt
routine is managed by the internal state machine (see Figure 8 on page 16). The
procedures included in this flowchart follow specific processes which cover all known I2C
errata issues (see Figure 4 on page 9 and Figure 7 on page 12).

It is highly recommended not to change this layer to ensure that the application handles
specific states on the I2C bus. The specific functions for I2C flow control are predefined in
this part of the firmware. They are called by the application layer to control all I2C processes
and can be customized by the user according to the application needs.

4.2.1 Functions predefined to control the data flow on master firmware
with interrupt (to be customized)

I2C_WriteRegister function

This function sets up and starts the state machine to perform an I2C write process. It returns
1 when the process is started or 0 when the peripheral or line is busy.

Prototype

u8 I2C_WriteRegister (u16 SlaveAdd, u8 AddType, u8 NoStop, u8 NumByteToWrite, u8
*DataBuffer).

Parameters

• SlaveAdd: unsigned short number address of the slave.

• AddType: 7-bit (SEV_BIT_ADDRESS) or 10-bit addressing (TEN_BIT_ADDRESS).

• NoStop: stop is/is not performed after the transmission (STOP; NOSTOP).

• NumByteToWrite: number of bytes to be sent.

• DataBuffer: first data buffer address.

Return value

• 0 is returned if the write process is not started due to other I2C operations.

• 1 is returned if the write process is started.

DocID17985 Rev 3 15/23

AN3281 Master firmware examples with interrupt

22

I2C_ReadRegister function

This function sets up and starts the state machine to perform an I2C read process. It returns
1 when the process is started or 0 when the peripheral or line is busy.

Prototype

u8 I2C_ReadRegister(u16 SlaveAdd, u8 AddType, u8 NoStop, u8 NumByteToRead, u8
*DataBuffer);

Parameters

• SlaveAdd: unsigned short number address of the slave.

• AddType: 7-bit (SEV_BIT_ADDRESS) or 10-bit addressing (TEN_BIT_ADDRESS).

• NoStop: stop is/is not performed before the transmission (used for 10-bit addressing.
mode when the complete address or header is sent depending on the STOP or
NOSTOP flag).

• NumByteToRead: number of bytes to be received.

• DataBuffer: first data buffer address.

Return value

• 0 is returned if the read process is not started due to other I2C operations.

• 1 is returned if the read process is started.

ErrProc function

This function is called from I2C interrupt routines each time an error is detected. It can be
customized according to the application needs.

Prototype

void ErrProc (void).

Parameters

None.

Return value

None.

DocID17985 Rev 3 16/23

AN3281 Master firmware examples with interrupt

22

Figure 8. I2C state machine flowchart

1. Legend: SB = start bit, W = write, R = read

2. The text in blue indicates the parts of this State machine which must be protected from interrupt by software disabling (see
the device errata sheet).

Note: For a 10-bit address random read, a WriteRegister function call (without data and STOP)
should be performed before a ReadRegister function call.

DocID17985 Rev 3 17/23

AN3281 Master firmware examples with interrupt

22

Example

// Send 10-bit slave address

I2C_WriteRegister (0x3F0,TEN_BIT_ADDRESS,NOSTOP,0,Buff);

// Read data from slave

I2C_ReadRegister (0x3F0,TEN_BIT_ADDRESS,STOP,3,Buff);

DocID17985 Rev 3 18/23

AN3281 Slave firmware examples with interrupt

22

5 Slave firmware examples with interrupt

5.1 Slave application layer example with interrupt

This layer simulates an I2C memory with an offset command example. The first datum
received is interpreted as a command (memory offset). Interaction with the data link layer is
made using specific customizable callback functions (see Section 5.2.1: Functions
predefined to control the data flow on slave firmware with interrupt (to be customized)).
These functions can be modified depending on the application needs.

5.2 Slave data link layer example with interrupt

All I2C activities of the data link layer are handled by the I2C interrupt service. All procedures
in this interrupt service follow specific processes which cover all known I2C errata issues
(see Figure 4 and Figure 7). It is highly recommended not to change this layer to ensure that
the application handles specific states on the I2C bus.

5.2.1 Functions predefined to control the data flow on slave firmware
with interrupt (to be customized)

I2C_transaction_begin

This function is called every time a transaction with the slave begins (slave address
recognized).

Prototype

void I2C_transaction_begin (void).

Parameters

None.

Return value

None.

DocID17985 Rev 3 19/23

AN3281 Slave firmware examples with interrupt

22

I2C_transaction_end

This function is called every time a transaction with the slave ends (stop or Nack detected).

Prototype

void I2C_transaction_end (void).

Parameters

None.

Return value

None.

I2C_byte_received

This function is called every time a byte is received by the I2C peripheral.
This example stores data in the memory.

Prototype

void I2C_byte_received (u8 u8_RxData).

Parameters

None.

Return value

None.

I2C_byte_write

This function is called every time a byte needs to be sent. It must return a u8 value which
corresponds to the byte to be written on the I2C line. In this example, the function returns
selected stored data from the memory.

Prototype

u8 I2C_byte_write(void).

Parameters

None.

Return value

To be customized according to the application needs. The returned value is the datum which
is written on the I2C line.

DocID17985 Rev 3 20/23

AN3281 Slave firmware examples with interrupt

22

ErrProc function

This function is called from the I2C interrupt routines each time an error is detected. It can
be customized according to the application needs.

Prototype

void ErrProc (void).

Parameters

None.

Return value

None.

DocID17985 Rev 3 21/23

AN3281 Slave firmware examples with interrupt

22

5.3 Data link layer flowchart

Figure 9. Data link layer flowchart

DocID17985 Rev 3 22/23

AN3281 Revision history

22

6 Revision history

Table 1. Document revision history

Date Revision Changes

20-Oct-2010 1 Initial release

20-Nov-2012 2

Document updated to include STM8AL and STM8TL5
devices.

Added Table 1: Applicable products.

Updated Reference documents.

09-May-2016 3
Modified Figure 8 and Figure 9.

Added Section 5: Slave firmware examples with interrupt.

DocID17985 Rev 3 23/23

AN3281

23

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Hardware configuration example of a common I2C bus
	Figure 1. Hardware configuration example of a common I2C bus

	2 Software of I2C firmware examples
	3 Master firmware examples in polling mode
	3.1 Application layer example in polling mode
	3.2 Data link layer example in polling mode
	3.2.1 Functions predefined to control the data flow on master firmware in polling mode (to be customized)
	Figure 2. N-data byte write sequences preceded by a one-command byte
	Figure 3. One-datum or command byte write sequence
	Figure 4. Flowchart of data-write sequences made by the I2C_WriteRegister() function
	Figure 5. N-data byte read sequences preceded by a one-command byte
	Figure 6. N-data byte random read sequences (without any command)
	Figure 7. Flowchart of data read sequences made by the I2C_RandomRead() function

	4 Master firmware examples with interrupt
	4.1 Master application layer example with interrupt
	4.2 Master data link layer example with interrupt
	4.2.1 Functions predefined to control the data flow on master firmware with interrupt (to be customized)
	Figure 8. I2C state machine flowchart

	5 Slave firmware examples with interrupt
	5.1 Slave application layer example with interrupt
	5.2 Slave data link layer example with interrupt
	5.2.1 Functions predefined to control the data flow on slave firmware with interrupt (to be customized)

	5.3 Data link layer flowchart
	Figure 9. Data link layer flowchart

	6 Revision history
	Table 1. Document revision history

